SKF bearing housings and roller bearing units
SKF mobile apps

SKF mobile apps are available from both Apple App Store and Google Play. These apps provide useful information and allow you to make critical calculations, providing SKF Knowledge Engineering at your fingertips.

Register your catalogue

You can get updates for this catalogue via email if you register at skf.com/catalogues.
SKF bearing housings – overview, selection and application recommendations

Split plummer block housings – SNL 2, 3, 5 and 6 series

Split plummer block housings – SE 2, 3, 5 and 6 series

Split plummer block housings – SNLN 30 series

Split plummer block housings – SNL 30, 31 and 32 series

Split plummer block housings – SED 30, 31, 32 and 39 series

Split plummer block housings – SONL series

Split pillow blocks – SAF and SAW series

Split plummer blocks – SDAF series

Non-split plummer block housings and take-up housings – SBD and THD series

Flanged housings – FNL series

Two-bearing housings – PD series

Housings for paper machines – SBFN, SBPN and SDM series

Split plummer block housings for converters in steel making – SKND series

Trunnion bearing housings for grinding mills – FSDR..K series

Metric roller bearings units – SYNT and FYNT series

Inch roller bearing units – SYE, SYR, FYE and FYR series

Indexes
SKF bearing housings
and roller bearing units
SKF bearing housings and roller bearing units

1 SKF bearing housings – overview, selection and application recommendations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics</td>
<td>22</td>
</tr>
<tr>
<td>Terminology</td>
<td>22</td>
</tr>
<tr>
<td>Overview of SKF bearing housings</td>
<td>27</td>
</tr>
<tr>
<td>Assortment</td>
<td>27</td>
</tr>
<tr>
<td>Housing materials</td>
<td>29</td>
</tr>
<tr>
<td>Selecting a housing</td>
<td>35</td>
</tr>
<tr>
<td>Environmental conditions</td>
<td>36</td>
</tr>
<tr>
<td>Custom painting / corrosivity category</td>
<td>36</td>
</tr>
<tr>
<td>Sealing solutions</td>
<td>36</td>
</tr>
<tr>
<td>The SKF three-barrier solution</td>
<td>39</td>
</tr>
<tr>
<td>Design considerations</td>
<td>40</td>
</tr>
<tr>
<td>Bearing systems</td>
<td>40</td>
</tr>
<tr>
<td>Load carrying ability</td>
<td>44</td>
</tr>
<tr>
<td>Specifications for shafts and housing support surfaces</td>
<td>45</td>
</tr>
<tr>
<td>Lubrication</td>
<td>46</td>
</tr>
<tr>
<td>Grease selection</td>
<td>46</td>
</tr>
<tr>
<td>Initial grease fill</td>
<td>46</td>
</tr>
<tr>
<td>Relubrication</td>
<td>46</td>
</tr>
<tr>
<td>SKF tools and products</td>
<td>47</td>
</tr>
<tr>
<td>Mounting</td>
<td>50</td>
</tr>
<tr>
<td>Preparations prior to mounting</td>
<td>50</td>
</tr>
<tr>
<td>SKF tools and products</td>
<td>50</td>
</tr>
<tr>
<td>Lifting housings</td>
<td>50</td>
</tr>
<tr>
<td>Attachment bolt tightening</td>
<td>50</td>
</tr>
<tr>
<td>Using shims</td>
<td>50</td>
</tr>
<tr>
<td>Using locating (stabilizing) rings</td>
<td>50</td>
</tr>
<tr>
<td>Installing seals</td>
<td>51</td>
</tr>
<tr>
<td>Inspection and condition monitoring</td>
<td>52</td>
</tr>
<tr>
<td>Storage</td>
<td>52</td>
</tr>
</tbody>
</table>
2 Split plummer block housings – SNL 2, 3, 5 and 6 series 55
 Designations .. 57
 Standard housing design .. 59
 Housing variants ... 62
 Sealing solutions ... 64
 Using sealed bearings .. 68
 Special seals ... 70
 Design considerations ... 72
 Lubrication .. 78
 Mounting ... 82
 Condition monitoring .. 83
 Accessories .. 84
 Ordering information .. 84

Product tables
2.1 SNL plummer block housings for bearings on an adapter sleeve,
 metric shafts .. 86
2.2 SNL plummer block housings for bearings on an adapter sleeve,
 inch shafts .. 100
2.3 SNL plummer block housings for bearings on a cylindrical seat 120

3 Split plummer block housings – SE 2, 3, 5 and 6 series 139
 Designations .. 141
 Standard housing design .. 143
 Product data ... 148
 Ordering information .. 149

4 Split plummer block housings – SNLN 30 series 151
 Designations .. 153
 Standard housing design .. 155
 Housing variants ... 158
 Sealing solutions ... 160
 Using sealed bearings .. 164
 Special seals ... 166
 Design considerations ... 168
 Lubrication .. 173
 Mounting ... 177
 Condition monitoring .. 178
 Accessories .. 178
 Ordering information .. 179

Product tables
4.1 SNLN 30 plummer block housings for bearings on an adapter sleeve 180
4.2 SNLN 30 plummer block housings for bearings on a cylindrical seat 184
5 **Split plummer block housings – SNL 30, 31 and 32 series** .. 189
 Designations ... 191
 Standard housing design .. 193
 Housing variants ... 196
 Sealing solutions ... 196
 Using sealed bearings .. 200
 Special seals .. 200
 Design considerations .. 203
 Lubrication ... 212
 Mounting ... 219
 Condition monitoring ... 220
 Accessories ... 221
 Ordering information ... 221

Product tables
5.1 Large SNL plummer block housings for bearings on an adapter sleeve, metric shafts 222
5.2 Large SNL plummer block housings for bearings on an adapter sleeve, inch shafts 260
5.3 Large SNL plummer block housings for bearings on a cylindrical seat 301

6 **Split plummer block housings – SED 30, 31, 32 and 39 series** 331
 Designations .. 333
 Standard housing design .. 334
 Housing variants ... 336
 Sealing solutions ... 337
 Design considerations .. 338
 Lubrication ... 342
 Mounting ... 342
 Condition monitoring ... 343
 Accessories ... 343
 Ordering information ... 343

Product tables
6.1 SED plummer block housings for bearings on an adapter sleeve 344

7 **Split plummer block housings – SONL series** ... 349
 Designations .. 351
 Standard housing design .. 353
 Housing variants ... 356
 Sealing solutions ... 356
 Design considerations .. 360
 Lubrication ... 364
 Mounting ... 368
 Condition monitoring ... 368
 Accessories ... 369
 Ordering information ... 369

Product tables
7.1 SONL plummer block housings for bearings on an adapter sleeve, metric shafts 370
7.2 SONL plummer block housings for bearings on an adapter sleeve, inch shafts 374
7.3 SONL plummer block housings for bearings on a cylindrical seat on stepped shafts 378
8 Split pillow blocks – SAF and SAW series (inch dimensions) .. 383
 Designations .. 385
 Standard housing design .. 386
 Housing variants .. 388
 Sealing solutions .. 389
 Using sealed bearings .. 401
 Special seals .. 104
 Design considerations .. 402
 Lubrication .. 408
 Mounting .. 414
 Condition monitoring ... 415
 Accessories ... 415
 Ordering information ... 416

Product tables
8.1 SAF pillow blocks with self-aligning ball bearings on an adapter sleeve 418
 (Series 15(00), 16(00))
8.2 SAF and SAW pillow blocks with spherical roller bearings on an adapter sleeve (Series 225(00), 226(00), 230(00)KA, 235(00)) .. 424
8.3 SAF pillow blocks with CARB bearings on adapter sleeve 430
 (Series C25(00), C26(00), C30(00)KA)
8.4 SAF pillow blocks with self-aligning ball bearings on a cylindrical seat 434
 (Series 13(00), 12(00))
8.5 SAF and SAW pillow blocks with spherical roller bearings on a cylindrical seat (Series 222(00), 223(00), 232(00)) ... 436
8.6 SAF pillow blocks with CARB bearings on a cylindrical seat 444
 (Series C22(00), C23(00))

9 Split pillow blocks – SDAF series including the extended range (inch dimensions) ... 449
 Designations .. 451
 Standard housing design .. 452
 Housing variants and customization .. 453
 Sealing solutions .. 454
 Special seals .. 462
 Design considerations .. 462
 Lubrication .. 467
 Mounting .. 470
 Condition monitoring ... 470
 Ordering information ... 470

Product tables
9.1 SDAF pillow block housings with spherical roller bearings on an adapter sleeve (Series 225(00), 226(00)) ... 472
9.2 SDAF pillow block housings with spherical roller bearings on a cylindrical seat (Series 222(00), 223(00)) ... 474
9.3 SDAF extended range pillow block housings with spherical roller bearings on an adapter sleeve ... 476
 (Series 230(00) KA, 231(00) KA, 232(00) KA)
9.4 SDAF extended range pillow block housings with spherical roller bearings on a cylindrical seat ... 480
 (Series 230(00), 231(00), 232(00))
10 Non-split plummer block housings and take-up housings – SBD and THD series

Designations ... 487
Standard housing design .. 488
Housing variants .. 490
Sealing solutions ... 490
Design considerations ... 493
Lubrication ... 498
Mounting .. 501
Condition monitoring ... 501
Accessories ... 501
Ordering information ... 501

Product tables
10.1 SBD plummer block housings for bearings on an adapter sleeve on plain shafts .. 502
10.2 SBD plummer block housings for bearings on an adapter sleeve on stepped shafts .. 508
10.3 SBD plummer block housings for bearings on a cylindrical seat on stepped shafts .. 514
10.4 SBD plummer block housings for bearings on a cylindrical seat on multi-stepped shafts .. 520
10.5 THD take-up housings for bearings on an adapter sleeve on plain shafts .. 526

11 Flanged housings – FNL series

Designations ... 533
Standard housing design .. 535
Housing variants .. 537
Sealing solutions ... 538
Design considerations ... 539
Lubrication ... 542
Mounting .. 544
Condition monitoring ... 544
Accessories ... 544
Ordering information ... 545

Product tables
11.1 FNL flanged housings for bearings on an adapter sleeve .. 546
12 Two-bearing housings – PD series
Designations ... 555
Standard housing design ... 557
Housing variants ... 558
Sealing solutions ... 558
Design considerations .. 560
Lubrication ... 567
Mounting ... 568
Condition monitoring ... 569
Accessories ... 569
Ordering information .. 570
Product tables
12.1 Two-bearing housings in the PDN series 572
12.2 Two-bearing housings in the PDP series 576
12.3 Two-bearing housings in the PDR series 578
12.4 Shafts for two-bearing housings in the PDN 2 series 580
12.5 Shafts for two-bearing housings in the PDN 3 series 582
12.6 Shafts for two-bearing housings in the PDP series 584
12.7 Shafts for two-bearing housings in the PDR series 586

13 Housings for paper machines – SBFN, SBPN and SDM series
Designations ... 591
Standard housing design ... 592
Housing variants ... 594
Sealing solutions ... 596
Design considerations .. 598
Lubrication ... 602
Mounting ... 603
Condition monitoring ... 604
Accessories ... 605
Ordering information .. 605
Product tables
13.1 SBPN drying cylinder housings 606
13.2 SBPN drying cylinder housings – short, wide base 608
13.3 SBPN drying cylinder housings, with inch connection threads .. 610
13.4 SBPN drying cylinder housings, with inch connection threads – short, wide base .. 612
13.5 SDM Yankee cylinder housings 614
13.6 SDM Yankee cylinder housings with inch connection threads .. 618

14 Split plummer block housings for converters in steel making – SKND series 623
Designations ... 625
Housing design .. 626
Housing variants .. 629
Sealing solutions ... 629
Design considerations ... 630
Lubrication ... 631
Mounting ... 632
Accessories ... 632
Ordering information .. 633
Product tables
14.1 SKND plummer block housings for converters 634
15 Trunnion bearing housings for grinding mills – FSDR .. K series 639
 Designations ... 641
 Standard housing design ... 642
 Housing variants ... 644
 Sealing solutions .. 645
 Design considerations .. 648
 Lubrication .. 650
 Mounting ... 652
 Condition monitoring ... 653
 Accessories .. 653
 Ordering information .. 654
 Product tables
 15.1 FSDR .. K grinding mill housings 656

16 Metric roller bearing units – SYNT and FYNT series (SKF ConCentra) 659
 Designations ... 661
 Standard bearing unit design ... 662
 Bearing unit variants ... 666
 Sealing solutions .. 667
 Design considerations ... 670
 Lubrication .. 675
 Mounting ... 682
 Condition monitoring ... 684
 Accessories .. 685
 Ordering information .. 685
 Product tables
 16.1 SKF ConCentra roller bearing units with a plummer block housing,
 metric shafts .. 686
 16.2 SKF ConCentra roller bearing units with a flanged housing,
 metric shafts .. 688

17 Inch roller bearing units – SYE, SYR, FYE and FYR series 691
 Designations ... 693
 Standard bearing unit design ... 694
 Sealing solutions .. 697
 Design considerations ... 700
 Lubrication .. 706
 Mounting ... 707
 Condition monitoring ... 707
 Accessories .. 707
 Ordering information .. 707
 Product tables
 17.1 SKF inch roller bearing units with a two-bolt pillow (plummer) block housing
 .. 708
 17.2 SKF inch roller bearing units with a four-bolt pillow (plummer) block housing
 .. 714
 17.3 SKF inch roller bearing units with a with a square flanged housing
 .. 716
 17.4 SKF inch roller bearing units with a round or piloted flanged housing
 .. 718

18 Indexes
 18.1 Text index .. 723
 18.2 Product index .. 738
 18.3 Bearing index ... 742
Unit conversions

Quantity Unit Conversion

<table>
<thead>
<tr>
<th>Length</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>inch</td>
<td>1 mm</td>
<td>0.03937 in.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 in.</td>
</tr>
<tr>
<td>foot</td>
<td>1 m</td>
<td>3.281 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ft.</td>
</tr>
<tr>
<td>yard</td>
<td>1 m</td>
<td>1.094 yd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 yd.</td>
</tr>
<tr>
<td>mile</td>
<td>1 km</td>
<td>0.6214 mi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mi.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>square inch</td>
<td>1 mm²</td>
<td>0.00155 sq-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 sq-in</td>
</tr>
<tr>
<td>square foot</td>
<td>1 m²</td>
<td>10.76 sq-ft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 sq-ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic inch</td>
<td>1 cm³</td>
<td>0.061 cu-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 cu-in</td>
</tr>
<tr>
<td>cubic foot</td>
<td>1 m³</td>
<td>35 cu-ft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 cu-ft</td>
</tr>
<tr>
<td>imperial gallon</td>
<td>1 l</td>
<td>0.22 gallon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 gallon</td>
</tr>
<tr>
<td>US gallon</td>
<td>1 l</td>
<td>0.2642 US gallon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 US gallon</td>
</tr>
</tbody>
</table>

Speed, velocity			
	foot per second	1 m/s	3.28 ft/s
	mile per hour	1 km/h	0.6214 mph
		1 mph	1,609 km/h

<table>
<thead>
<tr>
<th>Mass</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ounce</td>
<td>1 g</td>
<td>0.03527 oz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 oz.</td>
</tr>
<tr>
<td>pound</td>
<td>1 kg</td>
<td>2.205 lb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 lb.</td>
</tr>
<tr>
<td>short ton</td>
<td>1 tonne</td>
<td>1.1023 short ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 short ton</td>
</tr>
<tr>
<td>long ton</td>
<td>1 tonne</td>
<td>0.9842 long ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 long ton</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Density</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pound per cubic inch</td>
<td>1 g/cm³</td>
<td>0.0361 lb/cu-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 lb/cu-in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Force</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pound-force</td>
<td>1 N</td>
<td>0.225 lbf.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 lbf.</td>
</tr>
</tbody>
</table>

Pressure, stress			
	pounds per square inch	1 MPa	145 psi
		1 psi	6,8948 x 10³ Pa
	bar	14.5 psi	0.068948 bar
		1 bar	0.113 Nm

<table>
<thead>
<tr>
<th>Moment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pound-force inch</td>
<td>1 Nm</td>
<td>8.85 lbf-in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 lbf-in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>foot-pound per second</td>
<td>1 W</td>
<td>0.7376 ft-lbf/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ft-lbf/s</td>
</tr>
<tr>
<td>horsepower</td>
<td>1 kW</td>
<td>1.36 hp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 hp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>degree</td>
<td>Celsius</td>
<td>(t_C = 0.555 (t_F - 32))</td>
</tr>
<tr>
<td></td>
<td>Fahrenheit</td>
<td>(t_F = 1.8 t_C + 32)</td>
</tr>
</tbody>
</table>
This catalogue contains the standard assortment of SKF housings and roller bearing units typically used in industrial applications. To provide the highest levels of quality and customer service, these products are available worldwide through SKF sales channels. For information about lead times and deliveries, contact your local SKF representative or SKF Authorized Distributor.

The data in this catalogue reflects SKF’s state-of-the-art technology and production capabilities as of 2012. The data contained within may differ from that shown in earlier catalogues because of redesign, technological developments, or revised calculation methods. SKF reserves the right to continually improve its products with respect to materials, design and manufacturing methods, some of which are driven by technological developments.

Getting started
This catalogue contains detailed information about all standard SKF metric and inch bearing housings, some application specific housings and SKF roller bearing units. Roller bearing units consist of a housing, a spherical roller bearing, seals and lubricant. These ready-to-mount units can provide a number of advantages when compared to plummer (pillow) block or flanged housings. They are easy and safe to mount and do not require any additional parts.

The first section, which contains general technical information, is designed to help the reader select the best, most effective products for a particular application. In this section, shaft-bearing combinations, sealing solutions and lubrication methods are discussed in detail. Installation and maintenance information is also included. More practical information about mounting and maintenance is provided in the *SKF bearing maintenance handbook* (ISBN 978-91-978966-4-1).
The latest developments
The latest innovations within the area of SKF bearing housings include:

SE series housings – new housings in accordance with ISO 113
SNL series housings in the 2, 3, 5 and 6 series will be replaced gradually by the new SE housing series. SNL housings are still listed in this catalogue. When a series is converted from SNL to SE, technical updates will be available on skf.com/housings.

SED series housings – largest housings in the standard range
Split housings for bearings with shaft diameters from 430 mm up to 900 mm were typically not standard. A new design concept makes it possible to supply these exceptionally large housings as standard (Split plummer block housings – SED 30, 31, 32 and 39 series, page 331).

Housings for sealed spherical roller bearings
Sealed spherical roller bearings have been proven to enhance reliability under arduous operating conditions. Consequently, the SKF bearing housing assortment includes housings for these bearings.

Roller bearing units with SKF ConCentra locking technology
Like bearing units with a locking collar, SKF ConCentra roller bearing units are simple and safe to install. The unique SKF ConCentra locking technology provides a truly concentric fit on the shaft, which virtually eliminates fretting corrosion. These units provide the same running accuracy as housing assemblies with sleeve-mounted bearings. (Metric roller bearing units – SYNT and FYNT series, page 659 or Inch roller bearing units – SYE, SYR, FYE and FYR series, page 691).
How best to use this catalogue
The catalogue follows an easy principle:

- Chapter 1 provides basic information about bearing housings. It includes a product overview that compares different housing series, sizes, typical shaft-bearing combinations, sealing solutions and lubrication methods. (→ pages 21 to 53).
- Chapters 2 to 17 provide information specific to a bearing housing or bearing unit series. Basic design, variants, sealing options and design considerations are discussed in detail. Following that discussion are the product tables.
- Chapter 18 contains the indexes.

Find a housing for a bearing quickly
The bearing index (→ page 742) is a quick way to find a housing for a particular bearing. All bearings, which can be accommodated by a housing in this catalogue, are listed per bearing type and sorted alphanumerically, but with cylindrical bore bearings listed before tapered bore bearings.

Find specific information quickly
To make it easy to find specific information, there is a full table of contents at the front of the catalogue. In chapter 18, there is a product index and a full text index.

Find product details quickly
A quick way to access detailed product data is via the product table number. Product table numbers are listed in the full table of contents at the front of the catalogue, in the table of contents at the start of each product chapter and in the product and bearing indexes.
Identify products

Product designations for SKF bearing housings typically contain information about the housing and additional features. To specify a housing or to find more information about an existing SKF housing, SKF product designations can be found in:

- Product index
 The product index at the end of the catalogue lists series designations and relates them to the relevant product chapter and product table.
- Designation charts
 Charts in each product chapter provide an overview of commonly used designation prefixes and suffixes.

Units of measurement

This catalogue is for global use. Therefore, the predominant units of measurement are in accordance with ISO 80000-1. Imperial units are used whenever necessary. Unit conversions can be made using the conversion table (→ page 10).

For easier use, temperature values are provided in both, °C and °F. Temperature values are typically rounded. Therefore, the two values do not always match according to the conversion formula.
More SKF housings and units

Application specific housings
The SKF design and manufacturing capabilities for bearing housings are not limited to the products described in this catalogue. SKF has supplied bearing and housing solutions for various applications including:

- main shaft support for wind turbines
- rudder or drive shaft support for ships
- rail bound vehicles
- moveable bridges
- housings for split bearings

Customized housings
SKF can design custom housings using state-of-the-art finite element analysis. Prior to prototyping, SKF engineers can add their bearing, and seal expertise and confirm the integrity of the system on a virtual test rig. SKF housing manufacturing facilities are able to produce bearing housings for nearly all SKF rolling bearings.

Y-bearing units
Y-bearing units consist of a housing, a deep groove ball bearing, seals or shields and grease. These ready to mount units are available in a variety of shapes and sizes. For additional information about these products, visit skf.com/bearings.

Previous housing series
Some housing series are no longer available and are not listed in this catalogue. If replacement parts are required, especially for housings in the SOFN or SDG series, contact SKF.
From one simple but inspired solution to a friction problem in a mill in Sweden, and a handful of engineers in 1907, SKF has grown to become a global industrial knowledge leader. Over the years we have built on our expertise in bearings, extending it to seals, mechatronics, services and lubrication systems. Our knowledge network includes 46,000 employees, 15,000 distributor partners, offices in more than 130 countries, and a growing number of SKF Solution Factories around the world.

Research and development

We have hands-on experience in over forty industries, based on our employees’ knowledge of real life conditions. In addition our world-leading experts and university partners who pioneer advanced theoretical research and development in areas including tribology, condition monitoring, asset management and bearing life theory. Our ongoing commitment to research and development helps us keep our customers at the forefront of their industries.
Meeting the toughest challenges

Our network of knowledge and experience along with our understanding of how our core technologies can be combined helps us create innovative solutions that meet the toughest of challenges. We work closely with our customers throughout the asset life cycle, helping them to profitably and responsibly grow their businesses.

Working for a sustainable future

Since 2005, SKF has worked to reduce the negative environmental impact from our own operations and those of our suppliers. Our continuing technology development introduced the SKF BeyondZero portfolio of products and services which improve efficiency and reduce energy losses, as well as enable new technologies harnessing wind, solar and ocean power. This combined approach helps reduce the environmental impact both in our own operations and in our customers’.

Working with SKF IT and logistics systems and application experts, SKF Authorized Distributors deliver a valuable mix of product and application knowledge to customers worldwide.
Our knowledge – your success

SKF Life Cycle Management is how we combine our technology platforms and advanced services, and apply them at each stage of the asset life cycle, to help our customers to be more successful, sustainable and profitable.

Working closely with you

Our objective is to help our customers improve productivity, minimize maintenance, achieve higher energy and resource efficiency, and optimize designs for long service life and reliability.

Innovative solutions

Whether the application is linear or rotary or a combination of the two, SKF engineers can work with you at each stage of the asset life cycle to improve machine performance by looking at the entire application. This approach doesn’t just focus on individual components like bearings or seals. It looks at the whole application to see how each component interacts with the next.

Design optimization and verification

SKF can work with you to optimize current or new designs with proprietary 3-D modeling software that can also be used as a virtual test rig to confirm the integrity of the design.
Bearings
SKF is the world leader in the design, development and manufacture of high performance rolling bearings, plain bearings, bearing units and housings.

Machinery maintenance
Condition monitoring technologies and maintenance services from SKF can help minimize unplanned downtime, improve operational efficiency and reduce maintenance costs.

Sealing solutions
SKF offers standard seals and custom engineered sealing solutions to increase uptime, improve machine reliability, reduce friction and power losses, and extend lubricant life.

Mechatronics
SKF fly-by-wire systems for aircraft and drive-by-wire systems for off-road, agricultural and forklift applications replace heavy, grease or oil consuming mechanical and hydraulic systems.

Lubrication solutions
From specialized lubricants to state-of-the-art lubrication systems and lubrication management services, lubrication solutions from SKF can help to reduce lubrication related downtime and lubricant consumption.

Actuation and motion control
With a wide assortment of products – from actuators and ball screws to profile rail guides – SKF can work with you to solve your most pressing linear system challenges.
SKF bearing housings – overview, selection and application recommendations

Basics .. 22
Terminology 22
Overview of SKF bearing housings 27
 Assortment 27
 Housing materials 29
Selecting a housing 35
Environmental conditions 36
 Custom painting / corrosivity category ... 36
Sealing solutions 36
 The SKF three-barrier solution 39
Design considerations 40
 Bearing systems 40
 Locating/non-locating bearing systems. 40
 The SKF self-aligning bearing system .. 41
 Typical shaft-bearing combinations 41
 Load carrying ability 44
 Breaking loads 44
 Safe loads 44
 Axial load carrying ability for bearings on a sleeve 44
 Specifications for shafts and housing support surfaces 45
 Shaft 45
 Housing support surface 45
Mounting 50
 Preparations prior to mounting 50
 SKF tools and products 50
 Lifting housings 50
 Attachment bolt tightening 50
 Using shims 50
 Using locating (stabilizing) rings 50
 Installing seals 51
Inspection and condition monitoring ... 52
Storage 52
Lubrication 46
 Grease selection 46
 Initial grease fill 46
 Relubrication 46
 SKF tools and products 47

SKF
Basics

The purpose of a bearing housing is to:

- support the bearing and transmit operating static and dynamic loads
- protect the bearing and lubricant from contaminants
- contain the lubricant and accommodate lubrication system components
- accommodate monitoring system components
- maximize the performance and service life of the incorporated bearings

Terminology

An overview of the terminology used in this catalogue is provided in figs. 1 to 4:

- types of bearing housings and bearing units (→ fig. 1)
- split plummer (pillow) block housings (→ fig. 2)
- housing and shaft arrangements (→ figs. 3 and 4)
Fig. 1

- Split plummer (pillow) block housing
- Non-split plummer (pillow) block housing
- Flanged housing
- Take-up housing
- Two-bearing housing
- Roller bearing unit
SKF bearing housings – overview, selection and application recommendations

Fig. 2

SE plummer (pillow) block housing

- Cap bolt
- Cap
- Base
- Base end
- Centre line marking
- Split surface
- Attachment bolt
- Support surface
- Base plane
- Dimple
- Base side
- Attachment bolt hole

SONL plummer (pillow) block housing

- Eye bolt
- Oil level gauge
- Oil outlet hole
- Oil inlet holes
SE plumper (pillow) block housing

- Lock washer
- Lock nut
- Grease fitting
- Housing bore, bearing seat, housing seat
- Shaft diameter, bearing seat
- Locating ring (Stabilizing ring)
- Housing seat width
- Grease escape hole
- Bearing
- Adapter sleeve
- Seal groove
- Shaft
- Seal

FNL flanged housing

- Plug
- End cover (End plug)
- Cover bolt
- Housing body
- Flange
SKF bearing housings – overview, selection and application recommendations

Fig. 4

- Shaft sleeve
- Oil level gauge
- Relubrication hole
- Spacer sleeve
- Shaft abutment
Overview of SKF bearing housings

Assortment
The comprehensive assortment of SKF bearing housings is provided in tables 1 to 4, starting on page 30. SKF can also supply custom housings for specific applications and requirements. For additional information, contact the SKF application engineering service.

Split plummer (pillow) block housings
The main benefit of split plummer (pillow) block housings (fig. 5) is that they can accommodate preassembled shafts. Also, these housings simplify bearing inspections and maintenance because the shaft does not need to be disassembled.

The assortment of split plummer block housings is provided in table 1 on page 30. Application-specific housings are provided in table 4 on page 34.

Non-split plummer (pillow) block housings
Non-split plummer (pillow) block housings (fig. 6) are preferred when there are heavy loads acting in directions other than toward the support surface. They are also used when the housing has to be mounted from the end of the shaft.

The assortment of non-split plummer block housings is provided in table 2 on page 32. Application-specific housings are provided in table 4 on page 34.

Flanged housings
Flanged housings (fig. 7) provide a solution for applications that do not have a frame parallel to the shaft. The assortment of flanged housings is provided in table 2 on page 32.
Take-up housings
Take-up housings (→ fig. 8) are typically used to maintain the tension in conveyor belt applications and are mounted onto a guide frame.

The assortment of take-up housings is provided in table 2 on page 32.

Two-bearing housings
Two-bearing housings (→ fig. 9) have intrinsically aligned bearing seats. As a result, they can accommodate rigid bearings, such as deep groove ball bearings, angular contact ball bearings and cylindrical roller bearings. Two-bearing housings are typically used in applications with an overhanging load.

The assortment of two-bearing housings is provided in table 2 on page 32.

Roller bearing units
Roller bearing units consist of a bearing, housing, lubricant and seals as well as a mechanism to lock the bearing inner ring onto the shaft (→ fig. 10). These ready-to-mount units are assembled, lubricated and sealed at the factory for maximum service life. Bearing units require very little maintenance. They are also easy to install and replace. Once a unit is bolted to its support surface, only the grub (set) screws in the collar need to be tightened.

The assortment of roller bearing units is provided in table 3 on page 33.

Application-specific housings
Application-specific housings have features that enable them to be used in special operating conditions. The assortment of application-specific housings is provided in table 4 on page 34.
Housing materials

SKF housings are typically made of either grey cast iron or spheroidal graphite cast iron. For information about the material options available for a particular housing type, refer to tables 1 to 4, starting on page 30, or the relevant product chapter.

Grey cast iron

Grey cast iron is the standard material for most SKF housings and is sufficient for the majority of applications. It is characterized by high strength, good damping capability and good thermal conductivity.

Spheroidal graphite cast iron

Spheroidal graphite cast iron contains graphite nodules, making it ductile. It therefore provides a higher degree of strength and toughness than grey cast iron. On average, housings made of spheroidal graphite cast iron can withstand 1.8 times heavier loads compared to housings made of grey cast iron.
Split plummer (pillow) block housings

<table>
<thead>
<tr>
<th>Series</th>
<th>SNL 2, 3, 5 and 6</th>
<th>SE 2, 3, 5 and 6</th>
<th>SNLN 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Bearing types
- Self-aligning ball bearing
- Spherical roller bearing
- CARB bearing

Shaft diameter range
<table>
<thead>
<tr>
<th>from [mm]</th>
<th>to [mm]</th>
<th>from [in.]</th>
<th>to [in.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>160</td>
<td>3/4</td>
<td>5/16</td>
</tr>
<tr>
<td>30</td>
<td>160</td>
<td>11/8</td>
<td>15/16</td>
</tr>
<tr>
<td>110</td>
<td>280</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>430</td>
<td>900</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Shaft-bearing combination
- Bearing on an adapter sleeve
- Bearing on a withdrawal sleeve
- Bearing on a cylindrical seat

Sealing solutions
- Lip seal
- Radial shaft seal
- V-ring seal
- Felt seal
- Labyrinth seal
- Taconite heavy-duty seal
- Multi-seal

Lubrication
- Grease
- Oil – optional (2)

Materials
- Grey cast iron – standard
- Spheroidal graphite cast iron – optional
- Cast steel - standard

Mounting
- No attachment bolts
- Two-bolt mounting
- Four-bolt mounting
- Eight-bolt mounting

Supersedes (SKF)
- SNH, SNA, SN
- SNL 2, 3, 5 and 6, SNH, SNA, SN
- SN 30

Replacement for (non-SKF)
- ISO 113 standard housing

1) Not available for sizes 34 and above.
2) For sizes 518 to 532 circulating oil only.
Overview of SKF bearing housings

Table 1

<table>
<thead>
<tr>
<th>Bearing types</th>
<th>SNL 30, 31 and 32</th>
<th>SED</th>
<th>SONL</th>
<th>SAF, SAW</th>
<th>SDAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-aligning ball</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spherical roller</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CARB bearing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Shaft diameter range

<table>
<thead>
<tr>
<th></th>
<th>from [mm]</th>
<th>to [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>20</td>
<td>160</td>
</tr>
<tr>
<td>530</td>
<td>30</td>
<td>160</td>
</tr>
<tr>
<td>4 3/8</td>
<td>–</td>
<td>280</td>
</tr>
<tr>
<td>19 1/2</td>
<td>–</td>
<td>530</td>
</tr>
</tbody>
</table>

Shaft-bearing combination

<table>
<thead>
<tr>
<th></th>
<th>Bearing on an adapter sleeve</th>
<th>Bearing on a withdrawal sleeve</th>
<th>Bearing on a cylindrical seat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Sealing solutions

<table>
<thead>
<tr>
<th></th>
<th>Lip seal</th>
<th>Radial shaft seal</th>
<th>V-ring seal</th>
<th>Felt seal</th>
<th>Labyrinth seal</th>
<th>Taconite heavy-duty seal</th>
<th>Multi-seal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th></th>
<th>Grey cast iron</th>
<th>Spheroidal graphite cast iron</th>
<th>Cast steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>standard</td>
<td>standard</td>
<td>standard</td>
</tr>
<tr>
<td>optional</td>
<td>–</td>
<td>optional</td>
<td>–</td>
</tr>
</tbody>
</table>

Mounting

<table>
<thead>
<tr>
<th></th>
<th>No attachment bolts</th>
<th>Two-bolt mounting</th>
<th>Four-bolt mounting</th>
<th>Eight-bolt mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Supersedes (SKF)

<table>
<thead>
<tr>
<th></th>
<th>SNH, SNA, SN</th>
<th>SNL 2,3,5 and 6</th>
<th>SNH, SNA, SN</th>
<th>SNL 30 SD, SDD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Replacement for (non-SKF)

<table>
<thead>
<tr>
<th></th>
<th>ISO 113 standard housing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

1) Not available for sizes 34 and above.
2) For sizes 518 to 532 circulating oil only.
Table 2: Non-split housings

<table>
<thead>
<tr>
<th>Series</th>
<th>SBD</th>
<th>THD</th>
<th>FNL</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Bearing types

- Self-aligning ball bearing: 1
- Spherical roller bearing: 1
- CARB bearing: 1
- Other: 1

Shaft diameter range

<table>
<thead>
<tr>
<th>From [mm]</th>
<th>60</th>
<th>50</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>To [mm]</td>
<td>420</td>
<td>400</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

Shaft-bearing combination

- Bearing on an adapter sleeve: 1
- Bearing on a withdrawal sleeve: 1
- Bearing on a cylindrical seat: 1

Sealing solutions

- Lip seal: 1
- V-ring seal: 1
- Felt seal: 1
- Labyrinth seal: 1

Lubrication

- Grease: 1
- Oil: 1

Materials

- Grey cast iron: optional
- Spheroidal graphite cast iron: standard
- Cast steel: optional

Mounting

- No attachment bolts: n/a
- Two-bolt mounting: n/a
- Four-bolt mounting: 1

Supersedes (SKF)

<table>
<thead>
<tr>
<th>Series</th>
<th>7225(00)</th>
</tr>
</thead>
</table>

1) Typical bearings include deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings.

2) Housings with a triangular flange have three attachment bolts.
Table 3

Roller bearing units

<table>
<thead>
<tr>
<th>Series</th>
<th>SYNT</th>
<th>FYNT</th>
<th>SYE.. N, SYR.. N, FSYE</th>
<th>FYE, FYR, FYRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Bearing types

- Self-aligning ball bearing
- Spherical roller bearing
- CARB bearing

Shaft diameter range

<table>
<thead>
<tr>
<th>From [mm]</th>
<th>To [mm]</th>
<th>From [in.]</th>
<th>To [in.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>100</td>
<td>1 7/16</td>
<td>4 15/16</td>
</tr>
</tbody>
</table>

Locking method

- SKF ConCentra
- Locking collar

Sealing solutions

- Lip seal
- Radial shaft seal
- Labyrinth seal

Lubrication

- Grease
- Oil

Materials

- Grey cast iron

Mounting

- No attachment bolts
- Two-bolt mounting
- Four-bolt mounting

Supersedes (SKF)

- SYT

1) Housings with a triangular flange have three attachment bolts.
Application-specific housings

<table>
<thead>
<tr>
<th>Series</th>
<th>SBPN</th>
<th>SBFN</th>
<th>SDM</th>
<th>SKND</th>
<th>FSDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Application

<table>
<thead>
<tr>
<th>Application</th>
<th>Drying cylinder</th>
<th>Felt roll</th>
<th>Yankee cylinder</th>
<th>Converter trunnion</th>
<th>Mill trunnion</th>
</tr>
</thead>
</table>

Bearing types

<table>
<thead>
<tr>
<th>Bearing types</th>
<th>Drying cylinder</th>
<th>Felt roll</th>
<th>Yankee cylinder</th>
<th>Converter trunnion</th>
<th>Mill trunnion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-aligning ball bearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spherical roller bearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARB bearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shaft diameter range

<table>
<thead>
<tr>
<th>From [mm]</th>
<th>180</th>
<th>320</th>
<th>60</th>
<th>180</th>
<th>340</th>
<th>670</th>
<th>530</th>
<th>1180</th>
<th>825</th>
</tr>
</thead>
<tbody>
<tr>
<td>To [mm]</td>
<td></td>
<td></td>
<td>320</td>
<td></td>
<td>60</td>
<td></td>
<td>340</td>
<td></td>
<td>530</td>
</tr>
<tr>
<td>From [in.]</td>
<td>7.05</td>
<td>12.6</td>
<td>2.36</td>
<td></td>
<td>2.36</td>
<td></td>
<td>13.4</td>
<td></td>
<td>20.95</td>
</tr>
<tr>
<td>To [in.]</td>
<td></td>
<td></td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td>13.4</td>
<td></td>
<td>20.95</td>
</tr>
</tbody>
</table>

Shaft-bearing combination

<table>
<thead>
<tr>
<th>Bearing on an unthreaded sleeve</th>
<th>Drying cylinder</th>
<th>Felt roll</th>
<th>Yankee cylinder</th>
<th>Converter trunnion</th>
<th>Mill trunnion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing on a cylindrical seat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing on a tapered seat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sealing solutions

<table>
<thead>
<tr>
<th>Sealing solutions</th>
<th>Drying cylinder</th>
<th>Felt roll</th>
<th>Yankee cylinder</th>
<th>Converter trunnion</th>
<th>Mill trunnion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lip seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-ring seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labyrinth seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gap-type seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lubrication

<table>
<thead>
<tr>
<th>Lubrication</th>
<th>Drying cylinder</th>
<th>Felt roll</th>
<th>Yankee cylinder</th>
<th>Converter trunnion</th>
<th>Mill trunnion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>Drying cylinder</th>
<th>Felt roll</th>
<th>Yankee cylinder</th>
<th>Converter trunnion</th>
<th>Mill trunnion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey cast iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spheroidal graphite cast iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mounting

<table>
<thead>
<tr>
<th>Mounting</th>
<th>Drying cylinder</th>
<th>Felt roll</th>
<th>Yankee cylinder</th>
<th>Converter trunnion</th>
<th>Mill trunnion</th>
</tr>
</thead>
<tbody>
<tr>
<td>No attachment bolts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-bolt mounting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Four-bolt mounting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supersedes (SKF)

<table>
<thead>
<tr>
<th>Supersedes (SKF)</th>
<th>SBP</th>
<th>SBF 2)</th>
<th>SDKD</th>
<th></th>
</tr>
</thead>
</table>

1) Contact SKF.
2) Housings are still available.
Selecting a housing

When selecting a housing, many factors should be considered. The selection process depends not only on the bearing type and size but also on the ability of the housing to safely accommodate the magnitude and characteristics of all applied loads. Beside this, important considerations are mounting, maintenance, sealing options and bearing lubricant requirements.

Search for a housing
To identify housings that are suitable for a specific bearing type, size and shaft-bearing combination, use the Bearing index, starting on page 742, or the online application SKF Housing Select, available at skf.com/housings. Also keep in mind that a roller bearing unit may be the preferred solution (table 5). An online search facility for bearing units is also available at skf.com/housings.

Adjust the bearing selection
If there is no suitable housing for the selected bearing type or size, consider switching to a bearing that can be accommodated in a standard housing. The result will be a more cost-effective bearing/housing solution.

Select the final housing variant
Once a housing has been selected, be sure that the housing and available sealing solutions will accommodate the loads, shaft-bearing combination, lubrication method and operating conditions, e.g. type and level of contaminants. Consider all housing variants, including those with a non-standard seat tolerance or special seals. For unique requirements, contact the SKF application engineering service.

Table 5

<table>
<thead>
<tr>
<th>Housing series</th>
<th>Roller bearing unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNL 5 series</td>
<td>SKF ConCentra roller bearing units in the SYNT series</td>
</tr>
<tr>
<td>FNL series</td>
<td>SKF ConCentra roller bearing units in the FYNT series</td>
</tr>
</tbody>
</table>

1
Environmental conditions

SKF housings are intended for both interior and exterior applications. The following corrosivity categories, in accordance with ISO 12944-2, are applicable for SKF housings:

- C2 for all housings except SE and SED plummer (pillow) block housings
- C3 for SE and SED plummer (pillow) block housings

Additional information about corrosivity categories is provided in table 6.

Custom painting / corrosivity category

The standard colour and corrosivity category of an SKF housing is indicated in the relevant product chapter. SKF housings can also be supplied in other colours and/or corrosivity categories (→ table 6) or according to customer specifications. Housings that have a non-standard painting requirement are identified by the designation suffix P followed by a unique two- or three-digit number e.g. SNL 510-608/P76.

If a housing is going to be repainted, SKF recommends taking the following precautions prior to painting:

- Cover all housing openings. For housings with seal grooves, place discs cut from cardboard or plastic in the seal grooves. This is particularly important because residual chemicals or abrasives from the preparation process can lead to premature bearing and seal damage.
- Remove all grease fittings and protect all threaded holes with plugs.
- To avoid any chemical attack of the surface when washing painted castings, follow the instructions from the supplier of the washing chemicals regarding concentration, temperature, and time. The paint is resistant to commonly used low alkalescent washing chemicals.

Sealing solutions

The performance of a sealing arrangement is vital to the cleanliness of the lubricant and the service life of the bearings. The type of seal should be selected based on the lubricant type and operating speed but levels of contamination and misalignment should also be considered.

There is a wide assortment of SKF housing seals. Some housings can accommodate different types of seals, while other housings are designed for one specific sealing solution. For information about the sealing solutions available for a particular housing or roller bearing unit, refer to tables 1 to 4, starting on page 30, or the relevant product chapter. The properties, application conditions and suitability of each sealing solution are also provided in the relevant product chapter.

Converting circumferential to rotational speeds

To convert the circumferential speed limit of a sealing solution to the equivalent rotational speed, refer to table 7.
Table 6

Corrosivity categories

<table>
<thead>
<tr>
<th>Corrosivity category</th>
<th>Examples of typical environments in a temperate climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior</td>
<td></td>
</tr>
<tr>
<td>C1 (very low)</td>
<td>–</td>
</tr>
<tr>
<td>C2 (low)</td>
<td>Atmospheres with low levels of pollution. Typically inland rural areas.</td>
</tr>
<tr>
<td>C3 (medium)</td>
<td>Urban and industrial atmospheres with moderate levels of sulphur dioxide. Coastal areas with low salinity.</td>
</tr>
<tr>
<td>C4 (high)</td>
<td>Industrial and coastal areas with moderate salinity.</td>
</tr>
<tr>
<td>C5-I (very high, industrial)</td>
<td>Chemical plants, swimming pools, coastal ship- and boatyards.</td>
</tr>
<tr>
<td>C5-M (very high, marine)</td>
<td>Coastal and offshore areas with high salinity.</td>
</tr>
<tr>
<td>Interior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heated buildings with clean atmospheres, e.g. offices, shops, schools, hotels.</td>
</tr>
<tr>
<td></td>
<td>Unheated buildings where condensation may occur, e.g. depots, sport halls.</td>
</tr>
<tr>
<td></td>
<td>Production rooms with high humidity and some air pollution, e.g. food-processing plants, laundries, breweries, dairies.</td>
</tr>
<tr>
<td></td>
<td>Buildings or areas with almost permanent condensation and with high pollution.</td>
</tr>
</tbody>
</table>

1. In accordance with ISO 12944-2.
2. In hot, humid coastal areas, the mass loss or thickness loss can exceed the limits of category C5-M and special precautions should be taken when selecting protective paint systems.

Table 7

Converting circumferential speed limits to rotational speeds

<table>
<thead>
<tr>
<th>Shaft diameter at the seal lip (mm)</th>
<th>Rotational speed for circumferential speed limits (r/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 m/s</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Converting circumferential speed limits to rotational speeds

<table>
<thead>
<tr>
<th>Shaft diameter at the seal lip (mm)</th>
<th>Rotational speed for circumferential speed limits (r/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 m/s</td>
</tr>
<tr>
<td>80</td>
<td>480</td>
</tr>
<tr>
<td>85</td>
<td>450</td>
</tr>
<tr>
<td>90</td>
<td>420</td>
</tr>
<tr>
<td>95</td>
<td>400</td>
</tr>
<tr>
<td>100</td>
<td>380</td>
</tr>
<tr>
<td>110</td>
<td>350</td>
</tr>
<tr>
<td>115</td>
<td>330</td>
</tr>
<tr>
<td>120</td>
<td>320</td>
</tr>
<tr>
<td>125</td>
<td>310</td>
</tr>
<tr>
<td>130</td>
<td>290</td>
</tr>
<tr>
<td>135</td>
<td>280</td>
</tr>
<tr>
<td>140</td>
<td>270</td>
</tr>
<tr>
<td>145</td>
<td>260</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>155</td>
<td>250</td>
</tr>
<tr>
<td>160</td>
<td>240</td>
</tr>
<tr>
<td>165</td>
<td>230</td>
</tr>
<tr>
<td>170</td>
<td>220</td>
</tr>
<tr>
<td>175</td>
<td>220</td>
</tr>
<tr>
<td>180</td>
<td>210</td>
</tr>
<tr>
<td>185</td>
<td>210</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>205</td>
<td>190</td>
</tr>
<tr>
<td>215</td>
<td>180</td>
</tr>
<tr>
<td>220</td>
<td>170</td>
</tr>
<tr>
<td>240</td>
<td>160</td>
</tr>
<tr>
<td>255</td>
<td>150</td>
</tr>
<tr>
<td>260</td>
<td>150</td>
</tr>
<tr>
<td>270</td>
<td>140</td>
</tr>
<tr>
<td>280</td>
<td>140</td>
</tr>
<tr>
<td>295</td>
<td>130</td>
</tr>
<tr>
<td>300</td>
<td>130</td>
</tr>
<tr>
<td>320</td>
<td>120</td>
</tr>
<tr>
<td>340</td>
<td>110</td>
</tr>
<tr>
<td>360</td>
<td>110</td>
</tr>
<tr>
<td>380</td>
<td>100</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>410</td>
<td>90</td>
</tr>
<tr>
<td>430</td>
<td>90</td>
</tr>
<tr>
<td>450</td>
<td>80</td>
</tr>
<tr>
<td>470</td>
<td>80</td>
</tr>
<tr>
<td>500</td>
<td>80</td>
</tr>
</tbody>
</table>
Sealing solutions

The SKF three-barrier solution
For highly contaminated environments, SKF recommends the three-barrier solution. This cost-effective sealing solution can have a significant impact on bearing service life as contaminants have to pass through three barriers to reach the bearing (fig. 11):

1. 1st barrier – external housing seal
2. 2nd barrier – housing grease
3. 3rd barrier – integral bearing seal

The SKF three-barrier solution consists of a sealed SKF bearing, a housing with a 70 to 90\% grease fill, and labyrinth housing seals.

Sealed bearings have integral contact seals that keep the lubricant in and contaminants out of the bearing cavity during operation. The seals also protect the bearing from the ingress of contaminants during installation. Using a sealed bearing also means that the grease used to fill the housing and labyrinth seals is independent of the lubrication requirements for the bearing. Therefore, environmentally friendly, biodegradable greases, such as SKF LGGB 2, can be used to fill the housing (skf.com/lubrication).

When the SKF self-aligning bearing system is used (page 41), the labyrinth seal for the CARB toroidal roller bearing should be replaced with a taconite seal.
Design considerations

SKF housings are typically designed for self-aligning ball bearings, spherical roller bearings and CARB toroidal roller bearings. These bearings are chosen because they are insensitive to initial misalignment, which normally occurs when the housings are spaced far apart.

Two-bearing housings have inherently aligned bearing seats and therefore can accommodate rigid bearings such as deep groove ball bearings, angular contact ball bearings and cylindrical roller bearings.

Bearing systems

Locating/non-locating bearing systems

Conventional locating/non-locating bearing systems (→ fig. 15) are designed to accommodate thermal elongation of the shaft. In these systems, the non-locating bearing must be able to move axially on its seat in the housing.

SKF housings can accommodate bearings in both the locating and non-locating positions. Most standard housings have a bearing seat that is sufficiently wide to enable axial displacement of the non-locating bearing (→ fig. 12, “s”). When these housings are used in the locating position, locating (stabilizing) ring(s) should be used to secure the bearing axially in the housing (→ fig. 13).

Some SKF housing series are available with a wide bearing seat for axial displacement, designation suffix L, and a bearing seat that matches the width of the bearing to locate it axially, designation suffix F (→ fig. 14).
The SKF self-aligning bearing system
To accommodate misalignment and shaft deflections, conventional self-aligning bearing systems use spherical roller or self-aligning ball bearings in both the locating and non-locating bearing positions (→ fig. 15). To accommodate thermal elongation of the shaft in these systems, the non-locating bearing must be able to move axially on its seat in the housing. Any wear or damage to the housing seat results in a “stick-slip” condition that induces axial loads, friction, and heat into the bearing system.

A better solution is to use a CARB toroidal roller bearing in the non-locating position (→ fig. 15). CARB bearings accommodate misalignment and shaft deflections. They also accommodate thermal elongation of the shaft within the bearing, with virtually no friction, to avoid induced axial loads.

Because CARB bearings do not accommodate axial loads, these bearings must always be secured axially in the housing, with either locating (stabilizing) rings or by using a housing variant with an F (or RA for some housings) in its designation suffix.

Compared to conventional self-aligning bearing systems, replacing the non-locating bearing with a CARB bearing increases the load carrying capacity of the bearing system, enabling a more compact, and therefore lighter, bearing arrangement to be used. By virtually eliminating induced axial loads, vibration levels and temperatures are reduced and less grease is consumed, resulting in less maintenance. The solution contributes to improved reliability and extended bearing service life.

Typical shaft-bearing combinations
Bearings in SKF housings can be mounted either directly on a shaft or on a sleeve on the shaft. There are four typical combinations (→ table 8, pages 42–43):

- plain shaft with bearing on an adapter sleeve
- stepped shaft with bearing on an adapter sleeve
- stepped shaft with bearing on a withdrawal sleeve
- stepped shaft with bearing on a cylindrical seat

For information about the shaft-bearing combination alternatives for a particular housing type, refer to tables 1 to 4, starting on page 30, or the relevant product chapter.
SKF bearing housings – overview, selection and application recommendations

<table>
<thead>
<tr>
<th>Comparison of typical shaft-bearing combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Plain shaft with bearing on an adapter sleeve

Shaft
- Machining not required, drawn round bars (h9 or better) can be used
- Maximum shaft strength (no shoulders or undercuts)

Bearing
- Bearing can be mounted at any position on the shaft
- Internal clearance changes during mounting (proper drive-up required)
- Axial load carrying capacity limited by the adapter sleeve

Mounting and dismounting
- 40% less mounting force required compared to other sleeve mounted arrangements as friction only occurs between two mating surfaces
- Easy dismounting as the bearing inner ring is in contact with the stepped ring

Applications
- Long shafts where more than two bearings are required for support
- When the final position of the bearing cannot be accurately determined prior to mounting
- When machine components are mounted using clamping or tensioning devices so that the shaft does not need to be machined

Stepped shaft with bearing on an adapter sleeve

Shaft
- Machining required, typically two steps
- Shaft strength weakened by shoulders

Bearing
- Bearing position determined accurately by the stepped ring
- Internal clearance changes during mounting (proper drive-up required)
- Axial load carrying capacity limited by the shaft sleeve or adapter sleeve in one direction and by the bearing and housing in the other direction

Mounting and dismounting
- Other components on the shaft can be located axially against the bearing on its sleeve via spacer sleeves.
- Easy dismounting with a withdrawal sleeve and hydraulic nut

Applications
- Support of shaft ends
- Frequent mounting and dismounting
Table 8

<table>
<thead>
<tr>
<th>Plain shaft with bearing on an adapter sleeve</th>
<th>Stepped shaft with bearing on a withdrawal sleeve</th>
<th>Stepped shaft with bearing on a cylindrical seat</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Machining not required, drawn round bars (h9 or better) can be used</td>
<td>• Machining required, typically two steps</td>
<td>• Machining required, typically two steps</td>
</tr>
<tr>
<td>• Maximum shaft strength (no shoulders or undercuts)</td>
<td>• Shaft strength weakened by shoulders</td>
<td>• Shaft strength weakened by shoulders</td>
</tr>
<tr>
<td>• Largest shaft diameter for a given bearing size</td>
<td>• Largest shaft diameter for a given bearing size</td>
<td>• Largest shaft diameter for a given bearing size</td>
</tr>
<tr>
<td>• Bearing can be mounted at any position on the shaft</td>
<td>• Bearing position determined accurately by the stepped ring</td>
<td>• Bearing position determined accurately by the shaft shoulder</td>
</tr>
<tr>
<td>• Internal clearance changes during mounting (proper drive-up required)</td>
<td>• Internal clearance determined by the shaft seat tolerance</td>
<td>• Internal clearance determined by the shaft seat tolerance</td>
</tr>
<tr>
<td>• Axial load carrying capacity limited by the adapter sleeve</td>
<td>• Axial loads carrying capacity limited by the bearing and housing</td>
<td>• Axial loads carrying capacity limited by the bearing and housing</td>
</tr>
<tr>
<td>Other components on the shaft can be located axially against the bearing on its sleeve via spacer sleeves. Easy dismounting with a withdrawal sleeve and hydraulic nut</td>
<td>Other components can be located axially against the bearing via spacer sleeves Suitable when large numbers of bearings have to be mounted Simple axial locating by shaft nut</td>
<td>Other components can be located axially against the bearing via spacer sleeves Suitable when large numbers of bearings have to be mounted Simple axial locating by shaft nut</td>
</tr>
<tr>
<td>• Support of shaft ends Frequent mounting and dismounting</td>
<td>• Support of shaft ends Frequent mounting and dismounting</td>
<td>• Support of shaft ends Frequent mounting and dismounting</td>
</tr>
<tr>
<td>• Support of shaft ends Frequent mounting and dismounting Suitable for shock loads or where higher speeds or higher precision are required</td>
<td>• Support of shaft ends Frequent mounting and dismounting Suitable for shock loads or where higher speeds or higher precision are required</td>
<td>• Support of shaft ends Frequent mounting and dismounting Suitable for shock loads or where higher speeds or higher precision are required</td>
</tr>
</tbody>
</table>

Design considerations
Load carrying ability
The load carrying ability of a housing depends on many factors:

- the housing material and design and, where applicable, cap bolt strength
- the direction of the load
- the strength of the attachment bolts and support structure
- the condition of the support surface

SKF provides static housing load limits, either in the form of breaking loads or safe loads, for most housings. Where values are not provided, the load carrying ability is higher for the housing than for the bearing.

Breaking loads can be used to calculate a permissible load, based on a selected safety factor. Safe loads already include a safety factor.

Special attention is required for split housings subjected to cyclic loads or dynamic imbalance. Under these conditions, cap bolt and housing cap strength ($P_{180°}$) should be analyzed carefully. For additional information, contact the SKF application engineering service.

Breaking loads
For most SKF housings, guideline values for the breaking loads P are provided in the relevant product chapter. To obtain the permissible load for a housing, the guideline value should be divided by a factor based on the safety requirements and operating conditions of the application. In general engineering, a safety factor of 6 is typical. The permissible load can only be exploited if the housing is mounted properly and all bolts are tightened to the specified torque values. For split housings, the strength of the cap bolts should also be considered. A minimum safety factor of 2 against cap bolt yield should be used.

The load P_a is the axial breaking load of the housing. If the incorporated bearing is mounted on a sleeve, check the permissible axial load for the sleeve (\rightarrow Axial load carrying ability for bearings on a sleeve).

Safe loads
In some regions, safe loads are used instead of breaking loads. These guideline values have been established using accepted engineering practices, taking safety and ultimate tensile strength of the materials into account. They reflect a safety factor of 5 against housing fracture, and where applicable, a minimum factor of 2 against cap bolt yield. The safe loads can only be fully exploited if the housing is mounted properly and all bolts are tightened to the correct torque values.

Axial load carrying ability for bearings on a sleeve
When using a bearing on a sleeve on a plain shaft, the axial load carrying ability is limited either by the bearing, sleeve or housing.

For the axial load carrying ability of the bearing, refer to the product information available online at skf.com/bearings. For the sleeve, the permissible axial load to safely prevent slippage on the shaft is determined by the friction between the shaft and sleeve. Provided the bearing is mounted correctly (\rightarrow skf/mount.com), the permissible axial load can be calculated from

$$F_{ap} = 0.003 \times B \times d$$

where

- $F_{ap} =$ maximum permissible axial load [kN]
- $B =$ bearing width [mm]
- $d =$ bearing bore diameter [mm]

Information about the axial load carrying ability of the housing is provided in the relevant product chapter.
Specifications for shafts and housing support surfaces

Shaft

Bearing seat
Recommended fits for bearings on solid steel shafts in cast iron housings are provided in the SKF catalogue *Rolling bearings* and are available online at skf.com/bearings.

If adapter or withdrawal sleeves are used, the sleeve seat on the shaft should be machined to tolerance class h9 V or better. The total radial runnout should be IT5/2 for tolerance class h9 V.

If bearings are to be mounted directly onto the shaft, the cylindricity tolerance and total runout tolerance of the bearing seat should, depending on the requirements, be one to two IT tolerance grades better than the prescribed dimensional tolerance. Abutments for bearing rings should have a perpendicularity tolerance and total axial runout tolerance that is at least one IT tolerance grade better than the diameter tolerance of the associated cylindrical seat.

Seal seat or counterface
Recommendations are provided in the relevant product chapter. Generally, seal counterfaces should be machined to tolerance class h9 V or better and the cylindricity should be to tolerance grade IT5.

Surface roughness
At the sleeve and seal positions, the shaft surface should have a surface roughness $R_a \leq 3.2 \mu m (125 \mu in.)$. Recommendations for the surface roughness of cylindrical bearing seats are provided in the SKF catalogue *Rolling bearings* and are available online at skf.com/bearings.

Housing support surface
To maximize bearing service life and prevent deformation of the housing bore, SKF recommends that the flatness of the housing support surface is to tolerance grade IT7 in accordance with ISO 1101. The surface should be finished to a surface roughness $R_a \leq 12.5 \mu m (500 \mu in.)$.
Lubrication

Grease selection
Grease selection is typically driven by the bearing and its operating conditions. The same grease can be used to fill the housing and lubricate the seal.

For information about SKF greases, refer to the product information available online at skf.com/lubrication. The SKF grease selection program LubeSelect, also available online at skf.com/lubrication, can be used to select an appropriate grease.

Biodegradable grease for housings with sealed bearings
If sealed bearings are used, the grease used to fill the housing and lubricate the housing seals does not need to be compatible with the grease inside the bearing. This is a good opportunity to use environmentally friendly grease such as SKF LGGB 2. It is a biodegradable, low toxicity grease. For additional information about this grease, refer to the product information available online at skf.com/lubrication.

Initial grease fill
If no other requirements exist, the free space in the bearing should be completely filled with grease and the free space in the housing should be filled to 20 to 40% of its volume. A 40% grease fill is required when bearings have to be relubricated from the side, while a 20% grease fill is used when bearings are lubricated via the outer ring.

For highly contaminated environments and slow speeds, fill the housing to 70 to 80%. For the best protection against contaminants, use the SKF three-barrier solution (→ page 39).

Higher speeds can require a reduced grease fill. For additional information, contact the SKF application engineering service.

Quantities for the initial grease fill are provided in the individual product chapters.

Relubrication

Grease escape holes
Bearing arrangements in housings that have contact seals, e.g. double-lip or four-lip seals, can be equipped with a grease escape hole to allow used, excess grease to be purged from the housing. The escape hole should be positioned on the side opposite the grease inlet and if applicable, on the same side as the lock nut. For long relubrication intervals, it is often sufficient to remove the housing cap or cover and remove the old grease.

Relubrication via the outer ring
CAUTION: Care should be taken when relubricating spherical roller bearings in the non-locating position via their lubrication feature in the outer ring. There is a risk that the lubrication groove of the bearing will not be aligned with the hole in the centre of the housing cap and the lubricant will not reach the bearing. This can be the case when narrow bearings are mounted in housings with a wide housing seat, e.g. spherical roller bearings in the 222 series mounted in SNL 5(00) series housings, and the application is subjected to large axial movements. Under these circumstances, the bearings should be relubricated from the side.
SKF tools and products
SKF has a wide assortment of lubrication tools and products for SKF bearing housings. A brief overview is provided here. For additional information, refer to the product information available online at mapro.skf.com and skf.com/lubrication.

Grease meter
The SKF grease meter LAGM 1000E (fig. 16) accurately measures grease discharge in volume or weight, and in both metric (cm³ or g) and imperial (fl.oz. or oz.) units. It is suitable for all SKF bearing greases with a consistency class of up to 3 on the NLGI scale.

Automatic lubricators
Automatic lubricators can prevent both over and under-greasing.
SKF SYSTEM 24 lubricators (fig. 17) are automatic single point lubricators suitable for a wide range of applications and operating conditions. They are compact, easy to install and have a transparent container to check the amount of lubricant that is available. There are two series of lubricators: Gas driven lubricators include LAGD 60 (60 ml) and LAGD 125 (125 ml); Electro-mechanical driven lubricators include LAGE 125 (122 ml) and LAGE 250 (250 ml).

The SKF MultiPoint lubricator LAGD 400 (fig. 18) is a centralized automatic lubricator that simultaneously lubricates up to eight points. It is compact, easy to install and has a transparent container to check the amount of lubricant that is available.
SKF bearing housings – overview, selection and application recommendations

Oil levellers
SKF oil levellers LAHD 500 (→ fig. 19) and LAGH 1000 are designed to automatically adjust the oil level in a bearing housing. The levellers allow the oil level to be adjusted during operation, optimizing machine performance and increasing the service life of the bearings. The transparent container enables the oil level to be inspected.

Adapters to change connection threads
The assortment of adapters in the LAPN series (→ fig. 20) are available, to convert, for example, from a 1/8 – 27 NPSF thread to a G 1/4 thread.

Caps and tags for grease fittings
TLAC 50 caps and tags provide a space to properly identify the lubrication point(s) on a bearing housing as well as protect the grease fittings from the ingress of contaminants (→ fig. 21). The labels can also be used in conjunction with the SKF Lubrication Planner.

Centralized lubrication systems
The SKF Multilube pumping unit (→ fig. 22) is a compact, all-in-one unit for lubricating individual machines and equipment. Designed for indoor and outdoor use, the unit is suitable for all pumpable oils and greases and can be used in single line, dual line and progressive lubrication systems.
Lubrication
Mounting

Mounting instructions are supplied with most SKF bearing housings, or with the corresponding seal kit. For additional information about mounting, refer to the SKF bearing maintenance handbook or the information available online at skf.com/mount.

Preparations prior to mounting

Mounting housings (and bearings) requires care, accuracy and the appropriate tools. Prior to mounting, do the following:

- Make sure that the work area is clean.
- Study any drawings or instructions to determine the correct order in which to assemble the various components.
- Make sure that all the necessary components and tools are at hand.
- Clean the support surface.
- Check that the support surface meets the requirements for flatness (Specifications for shaft and housing support surface, page 45).
- Check that the shaft seats and seal counterfaces meet the requirements for dimensional and form accuracy, roughness and hardness (Specifications for shaft and housing support surface, page 45).
- Chamfer or round any shaft edges over which a seal lip will pass.

SKF tools and products

The SKF assortment of mounting tools and products includes mechanical tools, hydraulic tools, heating equipment and gloves. For additional information, refer to the product information available online at mapro.skf.com.

Lifting housings

Many SKF bearing housings are supplied with eye bolts for safe and easy handling. The eye bolts are designed to support the weight of the housing only, and not the incorporated bearing or shaft.

When lifting, make sure that the eye bolts are only subjected to load in the direction of the shank axis. The load should be evenly distributed across the number of eye bolts.

Using shims

Shims can be used to raise the centre height of a housing. SKF recommends using shims made of stainless sheet steel with sufficient strength and the ability to withstand corrosion from several media. Shims made from soft metals like copper or brass typically compress over time, causing looseness, which can eventually lead to misalignment. Whenever possible, use only one shim and never stack more than three shims.

CAUTION: Make sure that the shim covers the complete contact surface between the housing base and the support surface (fig. 23). If shims are placed under the housing feet only, the bearing seat can distort.

Using locating (stabilizing) rings

A bearing in the locating position must be secured axially in the housing. If the bearing seat in the housing and the bearing width do not match, locating (stabilizing) rings (fig. 24) are required. Typically, two locating rings are required per housing. One ring should be placed on each side of the bearing. If only one locating ring is required, it should be installed on the same side as the lock nut. When placing...
a locating ring in position, make sure that the open end of the locating ring is facing up.

CARB toroidal roller bearings, which are used exclusively in the non-locating position, require locating rings when the bearing seat in the housing and the bearing width do not match. For information about which locating rings are required for a bearing in a particular housing, refer to the relevant product chapter.

Installing seals

The seal counterface should meet the specifications for surface roughness and roundness (Specifications for shaft and housing support surface, page 45), and should be clean. If the counterface shows any signs of wear, repair it. This can be done easily with an SKF SPEEDI-SLEEVE or a large diameter wear sleeve (LDSLV). If repair is not possible, replace the shaft.

In general, the seal and counterface should be coated lightly with the lubricant used in the application.

When installing seals, make sure that the seal is oriented correctly. Many seals are not symmetrical and can be installed to either exclude contaminants or retain the lubricant.

Split seals consist of two halves, which can be installed around the shaft. They are easier to replace and can ease mounting.

Felt seals should be soaked in hot oil prior to installation.
Inspection and condition monitoring

SKF housings and roller bearing units should be inspected regularly for damage and lubricant leaks. SKF also recommends a visual inspection of the seals, plugs, bolts and housing joints. The frequency of these inspections depends on the operating conditions and potential downtime consequences but should be done as part of a regularly scheduled maintenance program.

Where oil bath lubrication is used, the oil level should be monitored regularly. During operation, the oil level may drop below the minimum level. If that should happen, and oil needs to be added while the machine is running, keep the oil level well below the maximum oil level on the indicator or overfilling can result.

For additional information about inspection techniques and corrective maintenance actions, refer to the *SKF bearing maintenance handbook*.

SKF also recommends monitoring the condition of all bearings on a regular or continuous basis to detect early signs of bearing damage. Trending the condition of the bearing makes it possible to analyze the root cause of an impending failure, and plan for corrective action. Trending can also eliminate unplanned downtime. The most reliable way to do condition monitoring is through vibration analysis.

Vibration analysis

Many SKF housings are prepared for condition monitoring and are supplied with drilled and tapped holes to accommodate sensors. For other housings, dimples indicate the position where sensors can be located. For information about the condition monitoring possibilities for a particular housing type, refer to the relevant product chapter.

SKF has a comprehensive assortment of vibration detection, analysis and diagnostic products, from light hand-held instruments to fully integrated monitoring systems. For additional information, refer to the product information available online at skf.com/cm.

Storage

SKF housings, roller bearing units and associated components, including the seals, should be stored under controlled temperature and humidity conditions in a clean, dry environment. Variations in temperature and humidity should be avoided but gradual, seasonal variations of a gradual nature are acceptable. As a general rule, SKF recommends the following storage conditions:

- temperature: < 30 °C (< 85 °F) for long-term storage
- relative humidity: < 60%
- If peaks above 65% occur regularly, a dehumidifier is required.
- temperature fluctuation: max 3 °C/48 hours

Under these conditions, housings can be stored for up to 10 years. Roller bearing units should not be subjected to vibration during storage as this could cause false brinelling damage to the bearing. Depending on the actual storage conditions, the lubricating properties of the initial grease fill might deteriorate. Generally SKF roller bearing units should not be stored for more than 3 years.